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A New Technique for the Stable Incorporation of
Static Field Solutions in the FDTD Method for
the Analysis of Thin Wires and Narrow Strips

Ian J. Craddock and Chris J. Railton,Member, IEEE

Abstract—The behavior of the fields around many common
objects (e.g., wires, slots, and strips) converges to known static
solutions. Incorporation of this a priori knowledge of the fields
into the finite-difference time-domain (FDTD) algorithm provides
one method for obtaining a more efficient characterization of
these structures. Various methods of achieving this have been
attempted; however, most have resulted in unstable algorithms.
Recent investigations into the stability of FDTD have yielded
criteria for stability, and this contribution for the first time
links these criteria to a general finite-element formulation of the
method. It is shown that the finite-element formulation provides
a means by which FDTD may be generalized to include whatever
a priori knowledge of the field is available, without compromising
stability. Example results are presented for extremely narrow
microstrip lines and wires.

Index Terms—Electromagnetic analysis, FDTD methods, finite-
element methods, Galerkin method.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method is well
established as a versatile electromagnetic-analysis tech-

nique [1]. However, when used to analyze structures with a
wide range of dimensions (e.g., those containing microstrip
lines and thin wires), a very fine spatial discretization is re-
quired to accurately characterize the electrically small features.
The resultant increase in the number of FDTD unit cells and
the corresponding decrease in the algorithm time step [1]
together create vastly increased demands for both storage and
computation in the algorithm.

The behavior of the field electrically close to these objects
is known; if this a priori knowledge of the field behavior
was incorporated into the algorithm then there would be less
requirement for any increase in spatial resolution. Attempts
to accomplish this [2] showed promise, but the modifications
required for the FDTD algorithm, while increasing accuracy,
compromised stability to the extent that the technique was
impractical.

Recently, however, the authors have shown that by consid-
ering a passive electrical circuit analog to the FDTD algorithm
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[3] when formulating a scheme for includinga priori knowl-
edge of field behavior in the algorithm, the stability properties
of the method are retained. In [4], a scheme based on the
equivalent circuit for incorporating the known field behavior
for microstrip lines with a width of a number of unit cells into
the FDTD algorithm was presented.

In this paper, an entirely new and general technique for
the inclusion ofa priori knowledge is presented; this new
methodology is developed from the point of view of the finite-
element method and is used to extend the work in [4] to narrow
microstrip (where the strip width could be less than one unit
cell) and to the case of modeling thin wires.

II. FDTD AS A FINITE-ELEMENT METHOD

It is instructive to consider how the Yee FDTD algorithm
can be derived from a finite-element perspective. The general
time-domain finite-element formulation can be approached in a
number of ways (see [5] for one such alternative formulation),
and to present it in full detail and rigor would require a great
deal of space—for the purposes of this paper, the theory may
be abbreviated and simplified somewhat as follows.

A three-dimensional Cartesian coordinate system is as-
sumed, each component of the electric and magnetic field
vectors can be expanded in terms of a suitable set of basis
functions, e.g.,

(1)

and so on for the other field components (henceforth, the
dependence of the coefficients on the time variableand
the basis functions on, , is assumed and omitted from
equations for clarity, for the same reason the summation limits
are removed).

The basis functions are assumed to have only local support;
the notation used herein conveniently indicates the volume
where the function is nonzero by subscripts and superscripts;
e.g., the function is equal to zero outside a
cubical volume centered on the point

—in other words, the position of the relevant
component in the FDTD unit cell, , (a uniform mesh
being assumed for simplicity).
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Introducing these functions and their associated coefficients
into Maxwell’s curl equations yields

(2)

(3)

where , for example, represents partial differentiation with
respect to (a homogeneous, isotropic, and lossless medium
has been assumed for clarity; however, the formulation may
easily be made more general).

An inner product [6] with each member of a set of test
functions is introduced in the usual fashion as follows:

(4)

(5)

The test functions are, like the basis functions, assumed to
have only local support and the same notation is introduced to
denote the volume over which they are nonzero.
This has the effect that most of the inner products become
zero, so (4) and (5) may be written (for any given, , )
as follows:

(6)

(7)

Similar expressions may be derived for all six field compo-
nents. The values of the inner products in the equations will
depend on the form of the basis and test functions and will
clearly vary according to the choices made for these functions.
Two obvious choices are: piecewise linearand Dirac delta
and piecewise constantand piecewise constant, and if the
usual staggered centred-difference scheme is used to replace
the operators in (6) and (7), then either choice yields the
traditional FDTD algorithm (although the second choice is
perhaps to be preferred, as will be shown in the following
sections).

Fig. 1. Section of FDTD mesh and equivalent circuit (including wire).

III. T HE EQUIVALENT CIRCUIT

The form and application of the FDTD equivalent circuit
is described by [3], [4], [7], and [8]. As references to the
components of the circuit are needed in later parts of this
paper, a brief review is given in this section.

A section of the FDTD mesh and equivalent circuit is
illustrated in Fig. 1; considering thevoltagequantities ,

, in unit cell , , and in the adjacent
cell, the properties of the gyrators lead to the relationship

(8)

and also (neglecting the field components not labeled in Fig. 1)

(9)

setting all the gyrator values equal to and the capacitor
values equal to and , respectively, gives

(10)

(11)

and this clearly illustrates the sense in which the circuit is
equivalent to the FDTD algorithm. The procedure is simply
extended to all the field components (or nodal voltages) and
yields thecontinuous timeor semi-discreteFDTD method (i.e.,
the time discretization is not included).

It is simple to show [9] that since the equivalent circuit
is energy conserving, its continuous time solution is stable
(according to any common definition of the term) and, given a
central difference approximation to the time derivatives, there
is alwaysa nonzero value of time step which ensures stability.

The equivalent-circuit concept has been of considerable util-
ity in producing guaranteed stable modified FDTD schemes.
In Section IV, the implications of the circuit are considered for
the finite-element approach described in the previous section.
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IV. COMPARISON OF THEEQUIVALENT-CIRCUIT

AND THE FINITE-ELEMENT FORMULATION

Comparing the terms in (6) and (8) shows that

(12)

(13)

Similarly, comparing (7) and (9)

(14)

Thus, for any finite-element formulation of the type assumed
in deriving (6) and (7), it is possible to define unique values for
the capacitors and gyrators in the equivalent circuit provided
that

(15)

if and this condition becomes

(16)

which can be shown to be true by integrating by parts.
To summarize: in formulating a finite-element solution of

the type described in Section II, if the basis and test functions
are chosen to be identical, then stability, conditional only on
the time step, is guaranteed (since the existence of a passive
equivalent circuit is guaranteed). Since the standard FDTD
algorithm can be derived using piecewise constant test and
basis functions, it naturally meets this criterion.

Previous contributions on incorporatinga priori knowledge
into the FDTD algorithm include approaches [10] in which
the standard FDTD method was considered basically as a
finite-element method with piecewise-linear basis and Dirac
delta test functions; the basis functions were modified to more
closely match the expected field distributions. These methods
often did not result in stable algorithms, as they did not meet
the above stability criterion.

The following sections illustrate howa priori knowledge
of the field close to thin wires and narrow metal strips may
be included in the FDTD method by modifying the basis
functions. A full description of the formulations in each case
would be extremely lengthy—the method is described here for
only a few field components (the entire method can be obtained
by following the same procedure using the appropriate basis
functions and limits of integration in each case).

V. FORMULATION FOR THIN WIRES

Consider a thin wire with radius (less than half-a-unit cell
dimension), as shown in Fig. 1. The static solutions for the

and field components are

(17)

(18)

in order to improve the accuracy of the FDTD solution the
basis functions in the vicinity of the wire are modified in
order that their shape matches these solutions as closely

as possible—thus, the basis functions centred on the field
components and in Fig. 1 are chosen to be

(19)

(20)

where the functions have been normalized to unity at the
position of the two field components.

As shown in previous sections, in this formulation the
capacitor values are equal to the inner product between each
basis function and itself and the gyrator values to the inner
product between each basis function and every other basis
function.

For example, the capacitor associated with can be
calculated by the integral

(21)

and the gyrator linking the and field components
is given by (employing now, for convenience a Cartesian
coordinate system with an origin at the position of the cell
vertex) the integral

(22)

In evaluating this expression it is important to recall that
the basis function for must be truncated, normally at

, according to the constraints on the finite-element
formulation given in Section II and, on the truncation plane, its

-derivative is a Dirac delta function with a weight equal
to the discontinuity. In this case, the procedure is modified
slightly due to the fact that the adjacent field component is
in the wire and, hence, unused— is accordingly truncated
instead at .

The integral is then split into the following two parts:

(23)

where indicates the end of the interval immediately before
the discontinuity in . Integrating the second term with
respect to yields

(24)
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Fig. 2. Section of FDTD mesh and equivalent circuit (including microstrip).

due to the particular form of (given by [18]), the second
integrand is zero and, apart from at the discontinuity, it is
easily shown that , therefore,

(25)

The integrals are readily performed numerically at the
beginning of the FDTD execution to yield modified update
equations based, for example, on (6) and (7). Since the
basis functions have been changed to fit the expected field
distribution, an improvement in accuracy for any given unit
cell size is expected; results obtained using this technique are
given in Section VII and confirm that this is the case.

VI. FORMULATION FOR NARROW MICROSTRIP

The methodology described in previous sections is, as
stated, entirely general. In order to improve the accuracy
of FDTD’s analysis of narrow microstrip lines, it is simply
necessary to choose as the basis functions the known static
solutions for the situation, as illustrated in Fig. 2.

In order to proceed, the static solutions for the fields
adjacent to a strip of width are needed—firstly, the following
quantities are defined:

(26)

(27)

(28)

using these quantities and with the, origin taken to be
the center of the strip, the behavior of the transverse field
components is

(29)

(30)

Fig. 3. Input impedance of a 5-m dipole with 1-mm thickness.

( denoting complex conjugation) and the longitudinal com-
ponents are given by

(31)

(32)

Normalized to unity at the position of the relevant field
components, these field solutions can be used to define the
basis functions for the field components adjacent to the strip
in the same manner as for the thin wires in Section V.

The value of is, for example, given by

(33)

Due to singularities in the static field solutions, care must
be taken with their integration—typically, the integrand is
expressed as the sum of singular and nonsingular parts; the
singular part is integrated analytically and the nonsingular
portion is numerically integrated.

The results obtained using this method for a microstrip line
are given in Section VIII.

VII. RESULTS FORTHIN WIRES

To demonstrate that modifying the basis/test functions pro-
duces an improvement in accuracy over the standard FDTD
method, wire dipoles of 5-m length and with radii between 1
mm and 5 cm were analyzed on an FDTD mesh with 50-cm
cell dimension. After exciting the dipoles with a delta-gap
source over a wide frequency range, the input impedance was
calculated.

As the dipole radius was at all times less than the FDTD
unit cell size, the standard FDTD algorithm would have
predicted the same input impedance regardless of the value of
radius. Figs. 3–6 compare the results using the modified basis
functions with FDTD and a well-proven wire dipole method
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Fig. 4. Input impedance of a 5-m dipole with 10-mm thickness.

Fig. 5. Input impedance of a 5-m dipole with 20-mm thickness.

of moments (MoM) technique employing piecewise sinusoidal
basis functions [11].

In each case, the dipole radius is much less than the
FDTD unit cell size; however, the change in impedance as a
function of radius and frequency closely matches the MoM
technique. The dips in the calculated impedance values at
60 MHz for the cases of extremely small radii were found
to be phenomena arising from the longitudinal discretization
of the dipole problem rather than the (radial) modified basis
functions.

All cases were entirely stable with a choice of time step
equal to the standard value for a three-dimensional FDTD
problem.

VIII. R ESULTS FORNARROW MICROSTRIP

In order to validate the application of the method to a narrow
strip, as described in Section VI, the variation in effective

Fig. 6. Input impedance of a 5-m dipole with 50-mm thickness.

Fig. 7. Dispersion characteristics of boxed microstrip lines(�r = 8:875).

permittivity of a boxed microstrip structure was sought over
frequency.

Two different FDTD models were investigated, each one
using modified basis functions to achieve an accurate char-
acterization of the effective permittivity. These models were:
0.635-mm substrate thickness, 0.3175-mm unit cell height and
1.270-mm substrate thickness, 0.3175-mm unit cell height.

The substrate relative permittivity was 8.875 and the width
of the strip was altered from a small fraction of the transverse
unit cell size (equal to 1 mm) to almost five unit cells. Fig. 7
shows the calculated effective permittivities at a spot frequency
of 2 GHz.

The dashed lines in Fig. 7 were produced using a spectral-
domain method (SDM), which is capable of highly accurate
characterizations of microstrip structures [12]. The continuous
solid lines are the results generated using the modified basis
functions and the discontinuous horizontal lines were the
values calculated using a standard FDTD method.

Clearly the standard FDTD algorithm is unable to resolve
subcellular changes in strip width and, except at the single
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points where (essentially by coincidence) the lines intersect the
true curves, the effective permittivities obtained vary widely
from the correct values. In contrast, the method described in
Section VI follows the SDM results closely even when the
strip width is a small fraction of a unit cell.

In both the modified and standard FDTD methods, it is
apparent that the vertical discretization through the substrate
plays an important part in accurately modeling the microstrip,
the models employing four unit cells here produce better
results.

The accuracy of the results presented here is similar to that
achieved in [13] using an alternative technique for incorpo-
rating the static field solution. However, the formulation used
in this contribution has the advantage of resulting in a stable
algorithm.

IX. CONCLUSIONS

FDTD may be formulated as a time-domain finite-element
method; one method to improve its accuracy without in-
creasing its computational overheads is to modify the basis
functions in order to match the known field behavior close to
wires, strips, etc. In general, however, the modifications to the
basis functions may very easily result in instability and render
the algorithm unusable.

This contribution, by examining the correspondence be-
tween the finite-element formulation and the FDTD equivalent
circuit, has shown that finite-element schemes, if they use
identical basis and test functions, will be stable.

Formulations which incorporate modified basis functions for
thin wires and narrow microstrip lines have been presented
and, by applying these to a number of example problems,
it has been demonstrated that they provide not only stable
algorithms, but ones which do indeed improve the accuracy
of analysis significantly.

In addition to the clear practical uses of the techniques
described herein, it is felt that the very different, yet entirely
complementary, insights offered by the equivalent-circuit and
finite-element viewpoints will be of interest and value to
workers in this area.
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